2017/10/30

Python - numpy 的使用方法

NumPy Reference

數列生成

>>> np.zeros(5)
#array([ 0.,  0.,  0.,  0.,  0.])

>>> np.ones(5)
#array([ 1.,  1.,  1.,  1.,  1.])

>>> np.arange(5)
#array([0, 1, 2, 3, 4])

更多的數列生成

數列變形

>>> np.arange(12)
#array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11])

>>> np.arange(12).reshape(2,6)
#array([[ 0,  1,  2,  3,  4,  5],
#       [ 6,  7,  8,  9, 10, 11]])

>>> np.arange(12).reshape(3,4)
#array([[ 0,  1,  2,  3],
#       [ 4,  5,  6,  7],
#       [ 8,  9, 10, 11]])

>>> np.arange(12).reshape(4,3)
#array([[ 0,  1,  2],
#       [ 3,  4,  5],
#       [ 6,  7,  8],
#       [ 9, 10, 11]])

>>> np.arange(12).reshape(6,2)
#array([[ 0,  1],
#       [ 2,  3],
#       [ 4,  5],
#       [ 6,  7],
#       [ 8,  9],
#       [10, 11]])

>>> np.arange(12).reshape(12,1).flatten()
#array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11])

查看數列形狀

>>> np.arange(12).reshape(1,2,3,2)
#array([[[[ 0,  1],
#         [ 2,  3],
#         [ 4,  5]],
#
#        [[ 6,  7],
#         [ 8,  9],
#         [10, 11]]]])

>>> np.arange(12).reshape(1,2,3,2).shape
#(1, 2, 3, 2)

更多的數列操作

2017/10/26

Rails - Apartment 的使用方法

簡介

Apartment : https://github.com/influitive/apartment

這個套件的功能是讓你在 rails 可以透過切換 db schema,來存取不同的資料。

在 postgresql 中,預設的 schema 名稱為 public ,而所有的 table 都在 schema 'public' 下。

你可以簡單地把 schema 看成 namespace,在 apartment 中,這被稱為是 tenant。

安裝步驟

請參考 : https://github.com/influitive/apartment

使用方法

在 rails c 環境下

新增 tenant

Apartment::Tenant.create('abc')

這個指令會在 schema 'abc' 下複製 public 上的所有表格。所以 tenant 就是具有相同表格的 schema。
在以下的示範,看到 abc 的地方,代表的是要填入你的 schema name。

顯示目前所在的 tenant

Apartment::Tenant.current
# "public"

切換 tenant

Apartment::Tenant.switch!('abc')
Apartment::Tenant.current
# "abc"
Apartment::Tenant.switch!('public')
Apartment::Tenant.current
# "public"

Apartment::Tenant.switch('abc') do
  Apartment::Tenant.current
  # "abc"
end

Apartment::Tenant.current
# "public"

有暫時切換跟永久切換兩種

在 rails db 環境下

列出所有 schema

\dn
#  List of schemas
#  Name  |  Owner   
#--------+----------
# public | postgres
# abc    | etrex
# (2 rows)

顯示目前所在的 schema

SHOW search_path;
#   search_path   
#-----------------
# "$user", public
# (1 row)

切換 schema

SET search_path TO abc;
# SET
SET search_path TO 'abc';
# SET

字串要不要加引號都可以,當 search_path 的值不在 schema 的列表上時不會跳 error,可以想像成連接到一個空的 schema,而這樣並不代表新增了一個 schema。

在 select 的當下使用 schema

SELECT * FROM schema_name.table_name;

關於 excluded_models

在 apartment 提供的功能中有一個功能,這個功能是可以設定在切換 schema 的時候,讓某些表格不要被切換,也就是做成全域的表格。

舉例來說,假設我有兩個 table,是使用以下 code 所生成。

# 這裡是 bash
rails g model a
rails g model b a:references
rails db:migrate

然後我將 B 做成全域的表格

# 這裡是 /config/initializers/apartment.rb 約 18 行的位置
config.excluded_models = %w{ B }

然後建立一個 tenant 'abc' 並且切換過去,在這個環境下做測試

# 這裡是 rails c 環境下
Apartment::Tenant.create('abc')
Apartment::Tenant.switch!('abc')

對 A 做一些事情

A.count
# (3.8ms)  SELECT COUNT(*) FROM "as"
# => 0 

對 B 也做一些事情

B.count
# (0.5ms)  SELECT COUNT(*) FROM "public"."bs"
# => 0 

在這裡可以看到,當你對 B 進行操作時,其實是會強制加上 "public" 的,也就是說,對於 B ,不管在哪一個 tenant 下,都只會去存取 schema 'public' 下的表格,所以其他的 schema 的表格 bs 應該會都是空的。

嘗試在 tenant 'abc' 下新增資料

a = A.create()
#   (0.2ms)  BEGIN
#  SQL (0.4ms)  INSERT INTO "as" ("created_at", "updated_at") VALUES ($1, $2) RETURNING "id"  [["created_at", "2017-10-25 17:16:22.084365"], ["updated_at", "2017-10-25 17:16:22.084365"]]

b = B.create(a:a)
#   (0.2ms)  BEGIN
#  SQL (1.5ms)  INSERT INTO "public"."bs" ("a_id", "created_at", "updated_at") VALUES ($1, $2, $3) RETURNING "id" [["a_id", 3], ["created_at", "2017-10-25 17:16:24.957753"], ["updated_at", "2017-10-25 17:16:24.957753"]]
#   (0.2ms)  ROLLBACK
#ActiveRecord::InvalidForeignKey: PG::ForeignKeyViolation: ERROR:  insert or update on table "bs" violates foreign #key constraint "fk_rails_ddf8c0c4b5"
#DETAIL:  Key (a_id)=(3) is not present in table "as".
#: INSERT INTO "public"."bs" ("a_id", "created_at", "updated_at") VALUES ($1, $2, $3) RETURNING "id"
# from (irb):31

這時候出大問題了,因為 A 建立在 abc 下,但是 B 建立在 public 下。而 public.bs 有一個外來鍵限制是 a_id 必須要在 public.as 中有出現。

使用 pgAdmin 連進去看,對 dbname/Schemas/public/Tables/bs/Constraints/fkrails_ddf8c04b5 按右鍵選 CREATE Script: 。

會看到生成的 script 內容為:

-- Constraint: fk_rails_ddf8c0c4b5

-- ALTER TABLE public.bs DROP CONSTRAINT fk_rails_ddf8c0c4b5;

ALTER TABLE public.bs
    ADD CONSTRAINT fk_rails_ddf8c0c4b5 FOREIGN KEY (a_id)
    REFERENCES public."as" (id) MATCH SIMPLE
    ON UPDATE NO ACTION
    ON DELETE NO ACTION;

在這裡明確地指出跟 public.bs 有關係的表格是 public.as ,而不是其他 schema 下的 as,但是 Apartment 不處理,所以會出問題。

2017/10/19

Network debug 方法

linux 環境下

查詢所有 process

ps

輸出

  PID TTY           TIME CMD
21968 ttys000    0:00.16 -bash

查詢 port 3000 被誰占用

lsof -i :3000

輸出

COMMAND   PID  USER   FD   TYPE             DEVICE SIZE/OFF NODE NAME
ruby    20308 etrex   25u  IPv4 0xd000000000000      0t0  TCP *:hbci (LISTEN)

刪除某個 process

kill 20308

強制刪除某個 process

kill -9 20308

參考文件

kill process:https://blog.gtwang.org/linux/linux-kill-killall-xkill/

Ruby - RSpec 的使用方法

RSpec 簡介

RSpec 在執行的時候不保證執行順序,每個測試產生的資料不會自動被清除。

新增測試的generator語法:

rails generate rspec:model user

這樣寫會建立一個檔案在 spec/models/user_spec.rb

執行測試的指令是在 rails 專案目錄下輸入以下指令:

# 這裡是 bash

# 執行所有測試
rspec

# 執行某個資料夾下的所有測試
rspec ./spec/models

# 執行某個檔案裡的所有測試
rspec ./spec/models/user_spec.rb

# 執行某個檔案裡的某個測試
rspec ./spec/models/user_spec.rb:8

簡單的範例

require 'rails_helper'

RSpec.describe "規格說明" do
  describe "處於某個狀態下" do
    # 設定狀態變數
    let(:a) { 1 }
    it "should be 1" do
      puts "should be 1"
      expect(a).to eq(1)
    end
  end
end

let 在每次測試裡,第一次存取變數時就會執行對應的程式

require 'rails_helper'

RSpec.describe "規格說明" do
  describe "處於某個狀態下" do
    let(:a) { puts "let a"; 1  }
    it "1" do
      puts "1"
      puts "a=#{a}"
    end
     it "2" do
      puts "2"
      puts "a=#{a}"
      puts "a=#{a}"
      puts "a=#{a}"
    end
  end
end

輸出

1
let a
a=1
.2
let a
a=1
a=1
a=1
.

before 和 after 會在所有測試的執行前後做事

RSpec.describe "規格說明" do
  describe "處於某個狀態下" do
    before { puts "before" }
    after { puts "after" }
    it "1" do
      puts "1"
    end
    it "2" do
      puts "2"
    end
  end
end

執行結果

before
1
after
.before
2
after
.

因為測試對資料庫的操作會互相影響,如果想要確保每個測試都是在資料庫乾淨的狀態下,可以使用 database_cleaner

require 'database_cleaner'
...
RSpec.configure do |config|
...
  config.before(:suite) do
    DatabaseCleaner.strategy = :transaction
    DatabaseCleaner.clean_with(:truncation)
  end

  config.around(:each) do |example|
    DatabaseCleaner.cleaning do
      example.run
    end
  end
...
end

其中的 before、around 可以參考官網說明文件:https://relishapp.com/rspec/rspec-core/v/2-13/docs/hooks/before-and-after-hooks#before/after-blocks-defined-in-config-are-run-in-order

如果想要控制 rspec 執行每一個 test 的順序,可以這樣寫:

# 這裡是 bash
rspec --order defined
rspec --seed 1

詳細的介紹可以參考 https://relishapp.com/rspec/rspec-core/docs/command-line/order

如果想要把結果輸出到檔案,可以這樣寫:

# 這裡是 bash
rspec --out result.txt
rspec --format documentation --out result.txt

上面兩行會使檔案內容不同,詳細的介紹可以參考 https://relishapp.com/rspec/rspec-core/v/2-4/docs/command-line/format-option

Ruby - debug 方法

查詢繼承關係

File.ancestors
# [File, IO, File::Constants, Enumerable, Object, Kernel, BasicObject]

從物件找方法

# 查 File 的類別方法
File.methods

# 查 File 的實體方法
File.instance_methods

# 查 File 的實體方法
File.new('/').methods

# 取得繼承樹上所有的方法
File.methods(true)

# 只取得屬於 File 的方法
File.methods(false)

從方法找定義

File.method(:read)
# #Method: File(IO).read

IO.method(:read)
# #Method: IO.read

IO.method(:read).source_location
# nil

因為 IO.read 的定義是寫在 c 語言,所以就不顯示了。

參考文件

為什麼File.method(:read)是nil:https://ja.stackoverflow.com/questions/5755/ruby-file-read-%E3%83%A1%E3%82%BD%E3%83%83%E3%83%89%E3%81%AE%E8%AA%AC%E6%98%8E%E3%82%92api%E3%83%89%E3%82%AD%E3%83%A5%E3%83%A1%E3%83%B3%E3%83%88%E3%81%A7%E8%AA%BF%E3%81%B9%E3%81%9F%E3%81%84

Python - 電腦字體數字辨識

續前篇:Python - draw text on image and image to numpy array

目標

嘗試建立一個簡單的類神經網路,只針對電腦字體數字 0~9 共 10 張圖片作訓練,訓練資料就是測試資料,在 40 次左右的訓練後正確度可達到 100%。

本文包含

  • keras 的使用
  • keras Model 輸出成圖片

程式碼

import numpy as np
from PIL import Image
from PIL import ImageFont
from PIL import ImageDraw

image_size = (8,13)
font_size = 10
x_train = np.array([])
y_train = np.array([])

for i in range(10):
    # 空白圖片生成
    image = Image.new('L', image_size, 0)

    # 取得繪圖器
    draw = ImageDraw.Draw(image)

    # 字型設定
    # font = ImageFont.truetype("C:/Windows/Fonts/cour.ttf", font_size)
    font = ImageFont.truetype("C:/Windows/Fonts/msjh.ttc", font_size)

    # 關閉反鋸齒
    draw.fontmode = '1'

    # 測量文字尺寸
    text_size = draw.textsize(str(i),font)
    # print('text_size:', text_size)

    # 文字置中
    text_position = ((image_size[0]-text_size[0])//2,(image_size[1]-text_size[1])//2)
    # print('text_position:', text_position)

    # 畫上文字
    draw.text(text_position, str(i), 255, font)

    # 存檔
    image.save(str(i)+'.bmp')

    # 轉成 numpy array
    na = np.array(image.getdata()).reshape(image.size[1], image.size[0])

    # 加入訓練資料
    x_train = np.append(x_train,na)
    y_train = np.append(y_train,i)

import keras
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import RMSprop

# 每次更新時所採用的資料筆數
batch_size = 1
# 總共有幾種數字
num_classes = 10
# 要更新幾次
epochs = 100

# 把資料轉成 model 需要的格式
x_train = x_train.reshape(10, 104)
x_train = x_train.astype('float32')
x_train /= 255
print(x_train.shape[0], 'train samples')

y_train = keras.utils.to_categorical(y_train, num_classes)

# 建立 model
model = Sequential()

# 一層 + softmax
model.add(Dense(num_classes, input_shape=(104,), activation='softmax'))

# ??
model.summary()

# 選擇 loss function 和 optimizer
model.compile(loss='categorical_crossentropy',
              optimizer=RMSprop(),
              metrics=['accuracy'])

# 開始訓練
history = model.fit(x_train, y_train,
                    batch_size=batch_size,
                    epochs=epochs,
                    verbose=1,
                    validation_data=(x_train, y_train))

# 計算分數
score = model.evaluate(x_train, y_train, verbose=0)

print('Test loss:', score[0])
print('Test accuracy:', score[1])

# 儲存 model 至圖片
from keras.utils import plot_model
plot_model(model, to_file='model.png')

輸出

Using TensorFlow backend.
10 train samples
_________________________________________________________________
Layer (type)                 Output Shape              Param #
=================================================================
dense_1 (Dense)              (None, 10)                1050
=================================================================
Total params: 1,050
Trainable params: 1,050
Non-trainable params: 0
_________________________________________________________________
Train on 10 samples, validate on 10 samples
Epoch 1/100
10/10 [==============================] - ETA: 0s - loss: 2.5473 - acc: 0.0000e+00 - val_loss: 2.4555 - val_acc: 0.1000
Epoch 2/100
10/10 [==============================] - ETA: 0s - loss: 2.4563 - acc: 0.1000 - val_loss: 2.3924 - val_acc: 0.1000
Epoch 3/100
10/10 [==============================] - ETA: 0s - loss: 2.3926 - acc: 0.1000 - val_loss: 2.3334 - val_acc: 0.2000
Epoch 4/100
10/10 [==============================] - ETA: 0s - loss: 2.3336 - acc: 0.2000 - val_loss: 2.2760 - val_acc: 0.2000
Epoch 5/100
10/10 [==============================] - ETA: 0s - loss: 2.2766 - acc: 0.2000 - val_loss: 2.2196 - val_acc: 0.2000
Epoch 6/100
10/10 [==============================] - ETA: 0s - loss: 2.2203 - acc: 0.2000 - val_loss: 2.1636 - val_acc: 0.4000
Epoch 7/100
10/10 [==============================] - ETA: 0s - loss: 2.1640 - acc: 0.4000 - val_loss: 2.1090 - val_acc: 0.5000
Epoch 8/100
10/10 [==============================] - ETA: 0s - loss: 2.1096 - acc: 0.4000 - val_loss: 2.0545 - val_acc: 0.5000
Epoch 9/100
10/10 [==============================] - ETA: 0s - loss: 2.0556 - acc: 0.5000 - val_loss: 2.0013 - val_acc: 0.5000
Epoch 10/100
10/10 [==============================] - ETA: 0s - loss: 2.0023 - acc: 0.5000 - val_loss: 1.9484 - val_acc: 0.5000
Epoch 11/100
10/10 [==============================] - ETA: 0s - loss: 1.9493 - acc: 0.5000 - val_loss: 1.8971 - val_acc: 0.5000
Epoch 12/100
10/10 [==============================] - ETA: 0s - loss: 1.8985 - acc: 0.5000 - val_loss: 1.8453 - val_acc: 0.5000
Epoch 13/100
10/10 [==============================] - ETA: 0s - loss: 1.8464 - acc: 0.5000 - val_loss: 1.7949 - val_acc: 0.5000
Epoch 14/100
10/10 [==============================] - ETA: 0s - loss: 1.7962 - acc: 0.5000 - val_loss: 1.7448 - val_acc: 0.5000
Epoch 15/100
10/10 [==============================] - ETA: 0s - loss: 1.7464 - acc: 0.5000 - val_loss: 1.6958 - val_acc: 0.5000
Epoch 16/100
10/10 [==============================] - ETA: 0s - loss: 1.6971 - acc: 0.5000 - val_loss: 1.6471 - val_acc: 0.5000
Epoch 17/100
10/10 [==============================] - ETA: 0s - loss: 1.6486 - acc: 0.5000 - val_loss: 1.5994 - val_acc: 0.5000
Epoch 18/100
10/10 [==============================] - ETA: 0s - loss: 1.6007 - acc: 0.5000 - val_loss: 1.5520 - val_acc: 0.7000
Epoch 19/100
10/10 [==============================] - ETA: 0s - loss: 1.5538 - acc: 0.7000 - val_loss: 1.5064 - val_acc: 0.7000
Epoch 20/100
10/10 [==============================] - ETA: 0s - loss: 1.5078 - acc: 0.7000 - val_loss: 1.4612 - val_acc: 0.7000
Epoch 21/100
10/10 [==============================] - ETA: 0s - loss: 1.4629 - acc: 0.7000 - val_loss: 1.4168 - val_acc: 0.7000
Epoch 22/100
10/10 [==============================] - ETA: 0s - loss: 1.4190 - acc: 0.7000 - val_loss: 1.3736 - val_acc: 0.7000
Epoch 23/100
10/10 [==============================] - ETA: 0s - loss: 1.3758 - acc: 0.7000 - val_loss: 1.3311 - val_acc: 0.8000
Epoch 24/100
10/10 [==============================] - ETA: 0s - loss: 1.3331 - acc: 0.8000 - val_loss: 1.2891 - val_acc: 0.8000
Epoch 25/100
10/10 [==============================] - ETA: 0s - loss: 1.2913 - acc: 0.8000 - val_loss: 1.2488 - val_acc: 0.9000
Epoch 26/100
10/10 [==============================] - ETA: 0s - loss: 1.2513 - acc: 0.9000 - val_loss: 1.2091 - val_acc: 0.9000
Epoch 27/100
10/10 [==============================] - ETA: 0s - loss: 1.2114 - acc: 0.9000 - val_loss: 1.1701 - val_acc: 0.9000
Epoch 28/100
10/10 [==============================] - ETA: 0s - loss: 1.1721 - acc: 0.9000 - val_loss: 1.1324 - val_acc: 0.9000
Epoch 29/100
10/10 [==============================] - ETA: 0s - loss: 1.1349 - acc: 0.9000 - val_loss: 1.0957 - val_acc: 0.9000
Epoch 30/100
10/10 [==============================] - ETA: 0s - loss: 1.0984 - acc: 0.9000 - val_loss: 1.0596 - val_acc: 0.9000
Epoch 31/100
10/10 [==============================] - ETA: 0s - loss: 1.0620 - acc: 0.9000 - val_loss: 1.0243 - val_acc: 0.9000
Epoch 32/100
10/10 [==============================] - ETA: 0s - loss: 1.0269 - acc: 0.9000 - val_loss: 0.9905 - val_acc: 1.0000
Epoch 33/100
10/10 [==============================] - ETA: 0s - loss: 0.9932 - acc: 1.0000 - val_loss: 0.9571 - val_acc: 1.0000
Epoch 34/100
10/10 [==============================] - ETA: 0s - loss: 0.9597 - acc: 1.0000 - val_loss: 0.9247 - val_acc: 1.0000
Epoch 35/100
10/10 [==============================] - ETA: 0s - loss: 0.9276 - acc: 1.0000 - val_loss: 0.8934 - val_acc: 1.0000
Epoch 36/100
10/10 [==============================] - ETA: 0s - loss: 0.8962 - acc: 1.0000 - val_loss: 0.8629 - val_acc: 1.0000
Epoch 37/100
10/10 [==============================] - ETA: 0s - loss: 0.8655 - acc: 1.0000 - val_loss: 0.8330 - val_acc: 1.0000
Epoch 38/100
10/10 [==============================] - ETA: 0s - loss: 0.8359 - acc: 1.0000 - val_loss: 0.8047 - val_acc: 1.0000
Epoch 39/100
10/10 [==============================] - ETA: 0s - loss: 0.8077 - acc: 1.0000 - val_loss: 0.7766 - val_acc: 1.0000
Epoch 40/100
10/10 [==============================] - ETA: 0s - loss: 0.7797 - acc: 1.0000 - val_loss: 0.7501 - val_acc: 1.0000
Epoch 41/100
10/10 [==============================] - ETA: 0s - loss: 0.7529 - acc: 1.0000 - val_loss: 0.7239 - val_acc: 1.0000
Epoch 42/100
10/10 [==============================] - ETA: 0s - loss: 0.7270 - acc: 1.0000 - val_loss: 0.6988 - val_acc: 1.0000
Epoch 43/100
10/10 [==============================] - ETA: 0s - loss: 0.7018 - acc: 1.0000 - val_loss: 0.6744 - val_acc: 1.0000
Epoch 44/100
10/10 [==============================] - ETA: 0s - loss: 0.6773 - acc: 1.0000 - val_loss: 0.6511 - val_acc: 1.0000
Epoch 45/100
10/10 [==============================] - ETA: 0s - loss: 0.6542 - acc: 1.0000 - val_loss: 0.6283 - val_acc: 1.0000
Epoch 46/100
10/10 [==============================] - ETA: 0s - loss: 0.6312 - acc: 1.0000 - val_loss: 0.6065 - val_acc: 1.0000
Epoch 47/100
10/10 [==============================] - ETA: 0s - loss: 0.6097 - acc: 1.0000 - val_loss: 0.5852 - val_acc: 1.0000
Epoch 48/100
10/10 [==============================] - ETA: 0s - loss: 0.5882 - acc: 1.0000 - val_loss: 0.5647 - val_acc: 1.0000
Epoch 49/100
10/10 [==============================] - ETA: 0s - loss: 0.5677 - acc: 1.0000 - val_loss: 0.5451 - val_acc: 1.0000
Epoch 50/100
10/10 [==============================] - ETA: 0s - loss: 0.5482 - acc: 1.0000 - val_loss: 0.5261 - val_acc: 1.0000
Epoch 51/100
10/10 [==============================] - ETA: 0s - loss: 0.5291 - acc: 1.0000 - val_loss: 0.5078 - val_acc: 1.0000
Epoch 52/100
10/10 [==============================] - ETA: 0s - loss: 0.5108 - acc: 1.0000 - val_loss: 0.4900 - val_acc: 1.0000
Epoch 53/100
10/10 [==============================] - ETA: 0s - loss: 0.4928 - acc: 1.0000 - val_loss: 0.4729 - val_acc: 1.0000
Epoch 54/100
10/10 [==============================] - ETA: 0s - loss: 0.4759 - acc: 1.0000 - val_loss: 0.4567 - val_acc: 1.0000
Epoch 55/100
10/10 [==============================] - ETA: 0s - loss: 0.4596 - acc: 1.0000 - val_loss: 0.4409 - val_acc: 1.0000
Epoch 56/100
10/10 [==============================] - ETA: 0s - loss: 0.4440 - acc: 1.0000 - val_loss: 0.4258 - val_acc: 1.0000
Epoch 57/100
10/10 [==============================] - ETA: 0s - loss: 0.4286 - acc: 1.0000 - val_loss: 0.4113 - val_acc: 1.0000
Epoch 58/100
10/10 [==============================] - ETA: 0s - loss: 0.4143 - acc: 1.0000 - val_loss: 0.3971 - val_acc: 1.0000
Epoch 59/100
10/10 [==============================] - ETA: 0s - loss: 0.4001 - acc: 1.0000 - val_loss: 0.3835 - val_acc: 1.0000
Epoch 60/100
10/10 [==============================] - ETA: 0s - loss: 0.3864 - acc: 1.0000 - val_loss: 0.3706 - val_acc: 1.0000
Epoch 61/100
10/10 [==============================] - ETA: 0s - loss: 0.3735 - acc: 1.0000 - val_loss: 0.3580 - val_acc: 1.0000
Epoch 62/100
10/10 [==============================] - ETA: 0s - loss: 0.3611 - acc: 1.0000 - val_loss: 0.3459 - val_acc: 1.0000
Epoch 63/100
10/10 [==============================] - ETA: 0s - loss: 0.3487 - acc: 1.0000 - val_loss: 0.3343 - val_acc: 1.0000
Epoch 64/100
10/10 [==============================] - ETA: 0s - loss: 0.3370 - acc: 1.0000 - val_loss: 0.3232 - val_acc: 1.0000
Epoch 65/100
10/10 [==============================] - ETA: 0s - loss: 0.3261 - acc: 1.0000 - val_loss: 0.3125 - val_acc: 1.0000
Epoch 66/100
10/10 [==============================] - ETA: 0s - loss: 0.3152 - acc: 1.0000 - val_loss: 0.3023 - val_acc: 1.0000
Epoch 67/100
10/10 [==============================] - ETA: 0s - loss: 0.3049 - acc: 1.0000 - val_loss: 0.2925 - val_acc: 1.0000
Epoch 68/100
10/10 [==============================] - ETA: 0s - loss: 0.2953 - acc: 1.0000 - val_loss: 0.2828 - val_acc: 1.0000
Epoch 69/100
10/10 [==============================] - ETA: 0s - loss: 0.2854 - acc: 1.0000 - val_loss: 0.2736 - val_acc: 1.0000
Epoch 70/100
10/10 [==============================] - ETA: 0s - loss: 0.2762 - acc: 1.0000 - val_loss: 0.2648 - val_acc: 1.0000
Epoch 71/100
10/10 [==============================] - ETA: 0s - loss: 0.2675 - acc: 1.0000 - val_loss: 0.2563 - val_acc: 1.0000
Epoch 72/100
10/10 [==============================] - ETA: 0s - loss: 0.2588 - acc: 1.0000 - val_loss: 0.2481 - val_acc: 1.0000
Epoch 73/100
10/10 [==============================] - ETA: 0s - loss: 0.2506 - acc: 1.0000 - val_loss: 0.2403 - val_acc: 1.0000
Epoch 74/100
10/10 [==============================] - ETA: 0s - loss: 0.2429 - acc: 1.0000 - val_loss: 0.2327 - val_acc: 1.0000
Epoch 75/100
10/10 [==============================] - ETA: 0s - loss: 0.2351 - acc: 1.0000 - val_loss: 0.2254 - val_acc: 1.0000
Epoch 76/100
10/10 [==============================] - ETA: 0s - loss: 0.2279 - acc: 1.0000 - val_loss: 0.2184 - val_acc: 1.0000
Epoch 77/100
10/10 [==============================] - ETA: 0s - loss: 0.2209 - acc: 1.0000 - val_loss: 0.2117 - val_acc: 1.0000
Epoch 78/100
10/10 [==============================] - ETA: 0s - loss: 0.2140 - acc: 1.0000 - val_loss: 0.2053 - val_acc: 1.0000
Epoch 79/100
10/10 [==============================] - ETA: 0s - loss: 0.2078 - acc: 1.0000 - val_loss: 0.1989 - val_acc: 1.0000
Epoch 80/100
10/10 [==============================] - ETA: 0s - loss: 0.2011 - acc: 1.0000 - val_loss: 0.1929 - val_acc: 1.0000
Epoch 81/100
10/10 [==============================] - ETA: 0s - loss: 0.1954 - acc: 1.0000 - val_loss: 0.1872 - val_acc: 1.0000
Epoch 82/100
10/10 [==============================] - ETA: 0s - loss: 0.1894 - acc: 1.0000 - val_loss: 0.1817 - val_acc: 1.0000
Epoch 83/100
10/10 [==============================] - ETA: 0s - loss: 0.1841 - acc: 1.0000 - val_loss: 0.1763 - val_acc: 1.0000
Epoch 84/100
10/10 [==============================] - ETA: 0s - loss: 0.1784 - acc: 1.0000 - val_loss: 0.1711 - val_acc: 1.0000
Epoch 85/100
10/10 [==============================] - ETA: 0s - loss: 0.1732 - acc: 1.0000 - val_loss: 0.1662 - val_acc: 1.0000
Epoch 86/100
10/10 [==============================] - ETA: 0s - loss: 0.1684 - acc: 1.0000 - val_loss: 0.1614 - val_acc: 1.0000
Epoch 87/100
10/10 [==============================] - ETA: 0s - loss: 0.1636 - acc: 1.0000 - val_loss: 0.1568 - val_acc: 1.0000
Epoch 88/100
10/10 [==============================] - ETA: 0s - loss: 0.1590 - acc: 1.0000 - val_loss: 0.1523 - val_acc: 1.0000
Epoch 89/100
10/10 [==============================] - ETA: 0s - loss: 0.1542 - acc: 1.0000 - val_loss: 0.1480 - val_acc: 1.0000
Epoch 90/100
10/10 [==============================] - ETA: 0s - loss: 0.1501 - acc: 1.0000 - val_loss: 0.1438 - val_acc: 1.0000
Epoch 91/100
10/10 [==============================] - ETA: 0s - loss: 0.1457 - acc: 1.0000 - val_loss: 0.1399 - val_acc: 1.0000
Epoch 92/100
10/10 [==============================] - ETA: 0s - loss: 0.1418 - acc: 1.0000 - val_loss: 0.1360 - val_acc: 1.0000
Epoch 93/100
10/10 [==============================] - ETA: 0s - loss: 0.1379 - acc: 1.0000 - val_loss: 0.1323 - val_acc: 1.0000
Epoch 94/100
10/10 [==============================] - ETA: 0s - loss: 0.1343 - acc: 1.0000 - val_loss: 0.1287 - val_acc: 1.0000
Epoch 95/100
10/10 [==============================] - ETA: 0s - loss: 0.1306 - acc: 1.0000 - val_loss: 0.1252 - val_acc: 1.0000
Epoch 96/100
10/10 [==============================] - ETA: 0s - loss: 0.1271 - acc: 1.0000 - val_loss: 0.1218 - val_acc: 1.0000
Epoch 97/100
10/10 [==============================] - ETA: 0s - loss: 0.1237 - acc: 1.0000 - val_loss: 0.1185 - val_acc: 1.0000
Epoch 98/100
10/10 [==============================] - ETA: 0s - loss: 0.1204 - acc: 1.0000 - val_loss: 0.1154 - val_acc: 1.0000
Epoch 99/100
10/10 [==============================] - ETA: 0s - loss: 0.1172 - acc: 1.0000 - val_loss: 0.1124 - val_acc: 1.0000
Epoch 100/100
10/10 [==============================] - ETA: 0s - loss: 0.1141 - acc: 1.0000 - val_loss: 0.1095 - val_acc: 1.0000
Test loss: 0.109465420246
Test accuracy: 1.0

輸出的圖片

plot_model 的執行,需要安裝 pydot 和 graphviz

pip3 install pydot

plot_model 的環境安裝

在 windows 上,graphviz 必須手動安裝,安裝檔可以到他們官網下載。
http://www.graphviz.org/Download_windows.php
安裝好之後必須在環境變數 path 加上 C:\Program Files (x86)\Graphviz2.30\bin 才能使用。
cmd 下輸入指令:

dot -version

若顯示以下訊息,表示正確安裝。

dot - graphviz version 2.30.1 (20130214.1330)
libdir = "C:\Program Files (x86)\Graphviz2.30\bin"
Activated plugin library: gvplugin_pango.dll
Using textlayout: textlayout:cairo
Activated plugin library: gvplugin_dot_layout.dll
Using layout: dot:dot_layout
Activated plugin library: gvplugin_core.dll
Using render: dot:core
Using device: dot:dot:core
The plugin configuration file:
        C:\Program Files (x86)\Graphviz2.30\bin\config6
                was successfully loaded.
    render      :  cairo dot fig gd gdiplus map pic pov ps svg tk vml vrml xdot
    layout      :  circo dot fdp neato nop nop1 nop2 osage patchwork sfdp twopi
    textlayout  :  textlayout
    device      :  bmp canon cmap cmapx cmapx_np dot emf emfplus eps fig gd gd2 gif gv imap imap_np ismap jpe jpeg jpg metafile pdf p
ic plain plain-ext png pov ps ps2 svg svgz tif tiff tk vml vmlz vrml wbmp xdot
    loadimage   :  (lib) bmp eps gd gd2 gif jpe jpeg jpg png ps svg

參考文件

plot_model 在 windows 上的環境建立:https://zhuanlan.zhihu.com/p/28158957
graphviz 的使用:https://www.openfoundry.org/tw/foss-programs/8820-graphviz-

2017/10/17

Python - draw text on image and image to numpy array

目標

嘗試生成以微軟正黑體寫成的數字0~9並轉換成 numpy array

本文包含

  • 生成圖片和保存圖片
  • 在圖片上寫出指定字型和大小的字
  • 設定反鋸齒模式
  • 圖片轉成 numpy array

程式碼

import numpy
from PIL import Image
from PIL import ImageFont
from PIL import ImageDraw

image_size = (8,13)
font_size = 10

for i in range(10):
    # 空白圖片生成
    image = Image.new('L', image_size, 0)

    # 取得繪圖器
    draw = ImageDraw.Draw(image)

    # 微軟正黑體
    font = ImageFont.truetype("C:/Windows/Fonts/msjh.ttc", font_size)

    # 關閉反鋸齒
    draw.fontmode = '1'

    # 測量文字尺寸
    text_size = draw.textsize(str(i),font)
    # print('text_size:', text_size)

    # 文字置中
    text_position = ((image_size[0]-text_size[0])//2,(image_size[1]-text_size[1])//2)
    # print('text_position:', text_position)

    # 畫上文字
    draw.text(text_position, str(i), 255, font)

    # 存檔
    image.save(str(i)+'.bmp')

    # 轉成 numpy array
    na = numpy.array(image.getdata()).reshape(image.size[1], image.size[0])

    # 印出
    print(na)

輸出

Using TensorFlow backend.
[[  0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0]
 [  0   0 255 255 255 255   0   0]
 [  0   0 255   0   0 255 255   0]
 [  0 255   0   0   0   0 255   0]
 [  0 255   0   0   0   0 255   0]
 [  0 255   0   0   0   0 255   0]
 [  0 255   0   0   0   0 255   0]
 [  0 255 255   0   0 255   0   0]
 [  0   0 255 255 255 255   0   0]
 [  0   0   0   0   0   0   0   0]]
[[  0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0]
 [  0   0   0 255 255   0   0   0]
 [  0   0 255 255 255   0   0   0]
 [  0   0   0   0 255   0   0   0]
 [  0   0   0   0 255   0   0   0]
 [  0   0   0   0 255   0   0   0]
 [  0   0   0   0 255   0   0   0]
 [  0   0   0   0 255   0   0   0]
 [  0   0 255 255 255 255 255   0]
 [  0   0   0   0   0   0   0   0]]
[[  0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0]
 [  0   0   0 255 255 255   0   0]
 [  0   0 255   0   0   0 255   0]
 [  0   0   0   0   0   0 255   0]
 [  0   0   0   0   0   0 255   0]
 [  0   0   0   0   0 255   0   0]
 [  0   0   0   0 255   0   0   0]
 [  0   0   0 255   0   0   0   0]
 [  0   0 255 255 255 255 255   0]
 [  0   0   0   0   0   0   0   0]]
[[  0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0]
 [  0   0   0 255 255   0   0   0]
 [  0   0 255   0   0 255   0   0]
 [  0   0   0   0   0 255   0   0]
 [  0   0   0 255 255   0   0   0]
 [  0   0   0   0   0 255   0   0]
 [  0   0   0   0   0 255   0   0]
 [  0   0 255   0   0 255   0   0]
 [  0   0 255 255 255   0   0   0]
 [  0   0   0   0   0   0   0   0]]
[[  0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0]
 [  0   0   0   0 255 255   0   0]
 [  0   0   0   0 255 255   0   0]
 [  0   0   0 255   0 255   0   0]
 [  0   0 255   0   0 255   0   0]
 [  0 255   0   0   0 255   0   0]
 [  0 255 255 255 255 255 255   0]
 [  0   0   0   0   0 255   0   0]
 [  0   0   0   0   0 255   0   0]
 [  0   0   0   0   0   0   0   0]]
[[  0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0]
 [  0   0 255 255 255 255   0   0]
 [  0   0 255   0   0   0   0   0]
 [  0   0 255   0   0   0   0   0]
 [  0   0 255 255 255   0   0   0]
 [  0   0   0   0   0 255   0   0]
 [  0   0   0   0   0 255   0   0]
 [  0   0 255   0   0 255   0   0]
 [  0   0 255 255 255   0   0   0]
 [  0   0   0   0   0   0   0   0]]
[[  0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0]
 [  0   0   0   0 255 255 255   0]
 [  0   0   0 255   0   0   0   0]
 [  0   0 255   0   0   0   0   0]
 [  0   0 255   0 255 255   0   0]
 [  0   0 255 255   0   0 255   0]
 [  0   0 255   0   0   0 255   0]
 [  0   0 255   0   0   0 255   0]
 [  0   0   0 255 255 255   0   0]
 [  0   0   0   0   0   0   0   0]]
[[  0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0]
 [  0 255 255 255 255 255 255   0]
 [  0   0   0   0   0 255   0   0]
 [  0   0   0   0   0 255   0   0]
 [  0   0   0   0 255   0   0   0]
 [  0   0   0   0 255   0   0   0]
 [  0   0   0 255   0   0   0   0]
 [  0   0   0 255   0   0   0   0]
 [  0   0 255   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0]]
[[  0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0]
 [  0   0   0 255 255   0   0   0]
 [  0   0 255   0   0 255   0   0]
 [  0   0 255   0   0 255   0   0]
 [  0   0   0 255 255   0   0   0]
 [  0   0   0 255   0 255   0   0]
 [  0   0 255   0   0   0 255   0]
 [  0   0 255   0   0   0 255   0]
 [  0   0   0 255 255 255   0   0]
 [  0   0   0   0   0   0   0   0]]
[[  0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0]
 [  0   0   0 255 255 255   0   0]
 [  0   0 255   0   0   0 255   0]
 [  0   0 255   0   0   0 255   0]
 [  0   0 255   0   0   0 255   0]
 [  0   0   0 255 255 255 255   0]
 [  0   0   0   0   0   0 255   0]
 [  0   0   0   0   0 255   0   0]
 [  0   0 255 255 255   0   0   0]
 [  0   0   0   0   0   0   0   0]]

參考文件

PIL影像相關:http://pillow.readthedocs.io/en/stable/reference/index.html

2017/10/13

Python - 印出 mnist 的手寫圖形

安裝 keras

請參考 https://etrex.blogspot.tw/2017/10/windows-10-keras.html

安裝 PIL

在 cmd 輸入以下指令:

pip3 install Image

若想查看已安裝了哪些套件,可在 cmd 輸入以下指令:

pip3 list

印出 MNIST 的手寫數字圖形

MNIST 是一個知名的手寫數字資料集,被當作機器學習界的 hello world 來使用。

import keras
from keras.datasets import mnist
from PIL import Image

(x_train, y_train), (x_test, y_test) = mnist.load_data()
Image.fromarray(x_train[0,]).show()

x_train 是一個大小為 60000,28,28 的三維陣列,代表 60000 張 28x28 的灰階圖檔。
可輸入以下指令查看:

x_train.shape
# (60000,28,28)

x_train[0,] 是一個大小為 28,28 的二維陣列,代表第一張圖片。

Image.fromarray(x_train[0,]).show() 把代表第一張圖片的二維陣列轉為圖片並顯示。

Python - debug 方法

印出變數值

a = 1
print(a)
# 1

印出變數型態

a = 1
print(type(a))
# <class 'int'="">

印出變數成員

a = 1
print(dir(a))
# ['__abs__', '__add__', '__and__', '__bool__', '__ceil__', '__class__', '__delattr__', '__dir__', '__divmod__', '__doc__', '__eq__', '__float__', '__floor__', '__floordiv__', '__format__', '__ge__', '__getattribute__', '__getnewargs__', '__gt__', '__hash__', '__index__', '__init__', '__int__', '__invert__', '__le__', '__lshift__', '__lt__', '__mod__', '__mul__', '__ne__', '__neg__', '__new__', '__or__', '__pos__', '__pow__', '__radd__', '__rand__', '__rdivmod__', '__reduce__', '__reduce_ex__', '__repr__', '__rfloordiv__', '__rlshift__', '__rmod__', '__rmul__', '__ror__', '__round__', '__rpow__', '__rrshift__', '__rshift__', '__rsub__', '__rtruediv__', '__rxor__', '__setattr__', '__sizeof__', '__str__', '__sub__', '__subclasshook__', '__truediv__', '__trunc__', '__xor__', 'bit_length', 'conjugate', 'denominator', 'from_bytes', 'imag', 'numerator', 'real', 'to_bytes']

印出模組成員

import json
dir(json)
# ['JSONDecodeError', 'JSONDecoder', 'JSONEncoder', '__all__', '__author__', '__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__path__', '__spec__', '__version__', '_default_decoder', '_default_encoder', 'decoder', 'dump', 'dumps', 'encoder', 'load', 'loads', 'scanner']

呼叫成員

a = -1
print(a.__abs__)
# <method-wrapper '__abs__'="" of="" int="" object="" at="" 0x00000000766f01d0="">

print(a.__abs__())
# -1

印出json

import json
print(json.dumps([1, 2, 3]))
# '[1, 2, 3]'

JS - 重複組合

給兩個序列 a 跟 b ,在不改變 a 和 b 序列順序的情況下,列出所有 a 跟 b 混合後的結果
使用重複組合的概念,兩個序列混合後的結果等同於其中一個序列的 index 的組合
舉例來說序列 a 為 --,序列 b 為 **,其所有混和結果為:

--**  
-*-*  
*--*  
-**-  
*-*-  
**--  

共六種,而我們可以把 a 序列所在的 index 寫出:

1,2  
1,3  
2,3  
1,4  
2,4  
3,4  

而這是 C4取2 的所有組合結果。
假設已知 b 序列長度為 6,我們可以使用迴圈生成組合。

var set = {
 "a":['b','b','b','b'],
 "b":['3','4','5','6','7','8']
}
var n = set['a'].length + set['b'].length;
var c = [];
for(var i1 = 0 ; i1 < n ; i1 ++)
for(var i2 = i1+1 ; i2 < n ; i2 ++)
for(var i3 = i2+1 ; i3 < n ; i3 ++)
for(var i4 = i3+1 ; i4 < n ; i4 ++)
for(var i5 = i4+1 ; i5 < n ; i5 ++)
for(var i6 = i5+1 ; i6 < n ; i6 ++){
 var ab = [];
 for(var i = 0 ; i < n ; i ++)
  ab.push('a');
 ab[i1] = 'b';
 ab[i2] = 'b';
 ab[i3] = 'b';
 ab[i4] = 'b';
 ab[i5] = 'b';
 ab[i6] = 'b';
 var c0 = [];
 var index = {"a":0,"b":0};
 for(var i = 0 ; i < n ; i ++){
  c0.push(set[ab[i]][index[ab[i]]]);
  index[ab[i]] = index[ab[i]] + 1;
 }
 c.push(c0);
 console.log(c0);
}

2017/10/11

在 Windows 10 上安裝 Keras 的流程

Keras 是一個在 Python 上的深度學習工具,用這個工具可以快速打造出複雜的類神經網路結構 他需要用到 TensorFlow,所以在安裝 Keras 之前要先安裝 TensorFlow 在安裝 TensorFlow 之前要先安裝 Python 2.7 或 3.5。

先裝 Python

我個人是安裝 Python 3.5,安裝流程請參考 https://pygame.hackersir.org/Lessons/01/Python_install.html, 正確安裝後,在 cmd 下輸入指令:

python -V

若顯示 Python 3.5.2 表示正確安裝。

接著裝 TensorFlow

以下介紹cpu版本的安裝,若需要gpu版本的安裝流程請參考https://rreadmorebooks.blogspot.tw/2017/04/win10cudacudnn.html
在 cmd 下輸入指令:

pip3 install --upgrade tensorflow

裝好後,接著輸入 python 進入互動模式:

python

再輸入以下的 python 程式碼(可直接複製貼上四行)

import tensorflow as tf
hello = tf.constant('Hello, TensorFlow!')
sess = tf.Session()
print(sess.run(hello))

若顯示 b'Hello, TensorFlow!' 表示正確安裝,此時可輸入 exit() 離開 python 互動模式。

SciPy

在裝 Keras 之前,可能需要手動裝 SciPy,因為 SciPy 的自動安裝流程在 Windows 上似乎不完整。 先開啟http://www.lfd.uci.edu/~gohlke/pythonlibs/#scipy, 然後點選 scipy‑1.0.0rc1‑cp35‑cp35m‑win_amd64.whl 下載檔案。 下載好了之後,在 cmd 切換目錄至下載目錄,然後輸入指令:

pip3 install scipy1.0.0rc1cp35cp35mwin_amd64.whl

最後裝 Keras

直接在 cmd 輸入指令:

pip3 install keras

裝好後,接著輸入 python 進入互動模式:

python

再輸入以下的 python 程式碼

import keras

若顯示 Using TensorFlow backend. 表示正確安裝,此時可輸入 exit() 離開 python 互動模式。

參考連結:

安裝 Python https://pygame.hackersir.org/Lessons/01/Python_install.html

安裝 TensorFlow https://www.tensorflow.org/install/install_windows

安裝 SciPy http://codewenda.com/windows%E4%B8%8A%E4%BD%BF%E7%94%A8pip%E5%AE%89%E8%A3%85scipy%E9%94%99%E8%AF%AF%EF%BC%9Arunning-setup-py-bdist_wheel-for-scipy-error/

安裝 Keras https://keras-cn.readthedocs.io/en/latest/#_2

安裝 nokogiri 失敗時的解決方法

(參考此篇文章)[https://github.com/sparklemotion/nokogiri/issues/1483]

在 bash 輸入 xcode-select --install 可解決問題。

在我的 macbook 上的錯誤訊息如下:

Gem::Ext::BuildError: ERROR: Failed to build gem native extension.

    current directory: /Users/etrex/.rvm/gems/ruby-2.4.1@-global/gems/nokogiri-1.8.0/ext/nokogiri
/Users/etrex/.rvm/rubies/ruby-2.4.1/bin/ruby -r ./siteconf20171011-80748-pgpdll.rb extconf.rb
checking if the C compiler accepts ... yes
checking if the C compiler accepts -Wno-error=unused-command-line-argument-hard-error-in-future... no
Building nokogiri using packaged libraries.
Using mini_portile version 2.2.0
checking for iconv.h... yes
checking for gzdopen() in -lz... yes
checking for iconv using --with-opt-* flags... yes
************************************************************************
IMPORTANT NOTICE:

Building Nokogiri with a packaged version of libxml2-2.9.4
with the following patches applied:
 - 0001-Fix-comparison-with-root-node-in-xmlXPathCmpNodes.patch
 - 0002-Fix-XPointer-paths-beginning-with-range-to.patch
 - 0003-Disallow-namespace-nodes-in-XPointer-ranges.patch

Team Nokogiri will keep on doing their best to provide security
updates in a timely manner, but if this is a concern for you and want
to use the system library instead; abort this installation process and
reinstall nokogiri as follows:

    gem install nokogiri -- --use-system-libraries
        [--with-xml2-config=/path/to/xml2-config]
        [--with-xslt-config=/path/to/xslt-config]

If you are using Bundler, tell it to use the option:

    bundle config build.nokogiri --use-system-libraries
    bundle install

Note, however, that nokogiri is not fully compatible with arbitrary
versions of libxml2 provided by OS/package vendors.
************************************************************************
Extracting libxml2-2.9.4.tar.gz into tmp/x86_64-apple-darwin15.4.0/ports/libxml2/2.9.4... OK
Running git apply with /Users/etrex/.rvm/gems/ruby-2.4.1@-global/gems/nokogiri-1.8.0/patches/libxml2/0001-Fix-comparison-with-root-node-in-xmlXPathCmpNodes.patch... OK
Running git apply with /Users/etrex/.rvm/gems/ruby-2.4.1@-global/gems/nokogiri-1.8.0/patches/libxml2/0002-Fix-XPointer-paths-beginning-with-range-to.patch... OK
Running git apply with /Users/etrex/.rvm/gems/ruby-2.4.1@-global/gems/nokogiri-1.8.0/patches/libxml2/0003-Disallow-namespace-nodes-in-XPointer-ranges.patch... OK
Running 'configure' for libxml2 2.9.4... OK
Running 'compile' for libxml2 2.9.4... ERROR, review
'/Users/etrex/.rvm/gems/ruby-2.4.1@-global/gems/nokogiri-1.8.0/ext/nokogiri/tmp/x86_64-apple-darwin15.4.0/ports/libxml2/2.9.4/compile.log' to see what happened. Last lines are:
========================================================================
    unsigned short* in = (unsigned short*) inb;
                         ^~~~~~~~~~~~~~~~~~~~~
encoding.c:815:27: warning: cast from 'unsigned char *' to 'unsigned short *' increases required alignment from 1 to 2 [-Wcast-align]
    unsigned short* out = (unsigned short*) outb;
                          ^~~~~~~~~~~~~~~~~~~~~~
4 warnings generated.
  CC       error.lo
  CC       parserInternals.lo
  CC       parser.lo
  CC       tree.lo
  CC       hash.lo
  CC       list.lo
  CC       xmlIO.lo
xmlIO.c:1450:52: error: use of undeclared identifier 'LZMA_OK'
    ret =  (__libxml2_xzclose((xzFile) context) == LZMA_OK ) ? 0 : -1;
                                                   ^
1 error generated.
make[2]: *** [xmlIO.lo] Error 1
make[1]: *** [all-recursive] Error 1
make: *** [all] Error 2
========================================================================
*** extconf.rb failed ***
Could not create Makefile due to some reason, probably lack of necessary
libraries and/or headers.  Check the mkmf.log file for more details.  You may
need configuration options.